258 research outputs found

    Impacts of the global economic crisis on foreign trade in lower-income economies in the Greater Mekong Sub-region and policy responses: the case of Vietnam and its implications for Lao PDR and Cambodia

    Get PDF
    This research seeks to better understand the impacts of the global economic crisis on Vietnamā€™s foreign trade and policy responses, and from this, draw inferences for Lao PDR and Cambodia.Global economic crisis, lower-income economices, GMS, CLMV

    The problem of longitudinal shock of two spherical end elastic bars with visco-elastic resistance force

    Get PDF
    Non

    Experiments and optimization for the WEDM process: A trade-off analysis between surface quality and production rate

    Get PDF
    This work addressed a parameter optimization to simultaneously decrease the root mean square roughness (Rq) as well as the thickness of the white layer (TW) and improve the material removal rate (MRR) for the wire electro-discharge machining (WEDM) of a stainless steel 304 (SS304). The factors considered are the discharge current (C), the gap voltage (VO), the pulse on time (POT), and the wire drum speed (SP). The interpolative radius basic function (RBF) is applied to show the correlation between the varied factors and WEDM performances measured. The optimal selection is chosen using the multi-objective particle swarm optimization (MOPSO). Moreover, a traditional one using the response surface method (RSM) and desirability approach (DA) is adopted to compare the working efficiency of two optimization techniques. The results showed that the optimal findings of the C, POT, VO, and SP are 5.0 A, 1.0Ā Āµs, 61.0 V, and 8.0 m/min, respectively. The values of the RqĀ and TW are decreased by approximately 33.33% and 23.53%, respectively, while the MRR enhances 47.42% at the optimal selection, as compared to the common values used. The BRF-MOPSO can provide better performance than the RSM-DA

    Phlogacanthus cornutus: chemical profiles and antioxidant effects

    Get PDF
    Phlogacanthus cornutus is a rare species and the chemical profiles and the bioactivities of this plant are unknown. In present study, the chemical components of the acetone extract as well as the antioxidant activity of acetone extract and its fractions such as n-hexane, chloroform and ethyl acetate of P. cornutus were firstly reported. A total of 33 constituents were identify in the acetone extract of this plant using Gas Chromatography/Mass Spectrometry assay, in which trans-cinnamic acid (21.26%), neophytadiene (6.36%), linolenic acid (5.86%), dihydroagathic acid (5.71%), n-hexadecanoic acid (5.53%), phytol (4.14%) and cis-cinnamic acid (3.23%) were the major compounds. The acetone extract and its fractions such as n-hexane, chloroform and ethyl acetate of P. cornutus showed DPPH radical scavenging activity with IC50 value of 234.31, 185.95, 758.65 and 458.52 Āµg/mL respectively

    A Study of the Optical Properties of Sm-doped ZnWO4 Synthesized by Hydrothermal Method

    Get PDF
    The ZnWO4:Sm3+ compounds were prepared by hydrothermal method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman scattering, absorption and photoluminescent (PL) techniques. This rare earth material presents high orange luminescence intensity under UV radiation. The excitation spectra of the compound presented broad bands arising from ligand-to-metal charge transfer (LMCT) (OĀ®W and OĀ®Sm3+) and narrow bands from 4f-intraconfigurational transitions. The emission spectra exhibited the 4G5/2Ā®6HJ (J = 5/2, 7/2, 9/2 and 11/2) transition (direct excitation), for the system doped with Sm3+, while a broad band assigned to the LMCT (OĀ®W) is observed when the excitation is monitored on the OĀ®W LMCT state

    Slip Resistance Test Apparatus of Synthetic Rubber Trackpad on Photovoltaic Surface

    Full text link
    The increasing development of the solar energy industry in many countries has led to a rising frequency of human and robot presence in this area. To ensure occupational safety, various protective equipment, including rubber material, is commonly used for slip resistance while moving on the surface of solar PV panels. Therefore, the slip resistance test apparatus is built for testing the slip resistance between the synthetic rubber trackpad and the photovoltaic panel (PV) surface. Synthetic rubber is a man-made material, so it is difficult to control the parameters of its mechanical and chemical properties absolutely. Variations in wet/dry working conditions or Shore hardness are factors that make slip computation more challenging. Therefore, an apparatus with the principle of converting the reciprocating motion of the screw and the casters into the rotation of the hinge is introduced to adjust the tilt angle of the upper surface, detect and evaluate the slippage of the rubber trackpad by sensors. Some parameters related to accuracy such as vibration and theoretical-empirical assessment, are also mentioned. In addition to designing a reliable apparatus, the article also succeeded in providing a safety standard for synthetic rubber with Shore A30-A40 when moving on PV surfaces.Comment: 4 pages, 10 figures, The 20th International Conference on Ubiquitous Robots (UR 2023

    Integrated Simulation Design Challenges to Support TPS Repair Operations

    Get PDF
    During the Orbiter Repair Maneuver (OM) operations planned for Return to Flight (RTF), the Shuttle Remote Manipulator System (SRMS) must grapple the International Space Station (ISS), undock the Orbiter, maneuver it through a long duration trajectory, and orient it to an EVA crewman poised at the end of the Space Station Remote Manipulator System (SSRMS) to facilitate the repair of the Thermal Protection System (TPS). Once repair has been completed and confirmed, then the SRMS proceeds back through the trajectory to dock the Orbiter to the Orbiter Docking System. In order to support analysis of the complex dynamic interactions of the integrated system formed by the Orbiter, ISS, SRMS, and SSMS during the ORM, simulation tools used for previous nominal mission support required substantial enhancements. These upgrades were necessary to provide analysts with the capabilities needed to study integrated system performance. Prevalent throughout this ORM operation is a dynamically varying topology. In other words, the ORM starts with the SRMS grappled to the mated Shuttle/ISS stack (closed loop topology), moves to an open loop chain topology consisting of the Shuttle, SRMS, and ISS, and then, at the repair configuration, extends the chain topology to one consisting of the Shuttle, SMS, ISS, and SSRMS/EVA crewman. The resulting long dynamic chain of vehicles and manipulators may exhibit significant motion between the Shuttle worksite and the EVA crewman due to the system flexibility throughout the topology (particularly within the SRMS/SSRMS joints and links). Since the attachment points of both manipulators span the flexible structure of the ISS, simulation analysis may also need to take that into consideration. Moreover, due to the lengthy time duration associated with the maneuver and repair, orbital effects become a factor and require the ISS vehicle control system to maintain active attitude control. Several facets of the ORM operation make the associated analytical efforts different from previous mission support, including: (1) the magnitude of the SRMS handled payload (Le., Orbiter class), (2) the orbital effects induced on the integrated system consisting of the large Shuttle and ISS masses connected by a light flexible SRMS, (3) long duration environmental consequences due to the lengthy operational times associated with the maneuver and repair of the TPS, (4) active attitude control (as opposed to free drift) interacting with the SRMS and SSRMS manipulators (also due to the length of the maneuver and repair), (5) relative dynamics between the EVA crewman and thc worksite influenced by the extended flexible topology. In order to meet these analysis challenges, an O Msi mulation architecture was developed leveraging upon numerous pre-existing simulation elements to analyze the various subsystems individually. For example, core manipulator subsystem simulations for both the SRMS and SSRMS were originally combined to provide the dual-arm dynamics topology simulation (in the absence of orbital dynamics and vehicle control). This capability was later merged with the simulation used to analyze SRMS loading with a heavy payload in the orbital environment with an active payload control system (in this case, the ISS Attitude Control System (ACS)), configured for the ORM. The resulting worksite dynamics simulation, based off of the modified ORM simulation, provided the extended topological chain of vehicles and manipulators, while taking into account the orbital effects of both the Shuttle and ISS (as well as its ACS). Verification and validation (V&V) of these integrated simulations became a challenge in itself. A systematic approach needed to be developed such that integration simulation results could be tested against previous constituent simulations upon which these simulations were built. General V&V categories included: (1) core orbital state propagation, (2), stand-alone SRMS, (3) stand-alone SSRMS, (4) stand-alone ISS ACS, (5)ntegrated Shuttle, SRMS, ISS (with active ACS) in the orbital environment, and (5) dual-arm SRMS/SSRMS dynamics topology. Integrated simulation V&V run suites were created and correlated to verification runs from subsystem simulations, in order to establish the validity of the results. This paper discusses the simulation design challenges encountered while developing simulation capabilities to mirror the ORM operations. The paper also describes the incremental build approach that was utilized, starting with the subsystem simulation elements and integration into increasing more complex simulations until the resulting ORM worksite dynamics simulation had been assembled. Furthermore, the paper presents an overall integrated simulation V&V methodology based upon a subsystem level testing, integrated comparisons, and phased checkout

    Chemical profiles and antibacterial activity of acetone extract of two Curcuma species from Vietnam

    Get PDF
    Curcuma thorelii Gagnep. and Curcuma cotuana Luu, Å korni?k. & H.?.Tr?n are the rare species only found in Southeast Asia. The present study was the first to explore the chemical compositions and antibacterial effects of the whole plant acetone extracts of these 2 species. Altogether 41 and 31 compounds have been identified in C. thorelii and C. cotuana extracts by gas chromatography/mass spectrometry. Accordingly, the C. thorelii extract contained (E)-labda-8(17),12-diene-15,16-dial (33.37%), vitamin E (12.33%), phytol (9.83%) as the major compounds while C. cotuana extract contained predominantly (E)-labda-8(17),12-diene-15,16-dial (14.58%), n-hexadecanoic acid (10.96%), 3,7,11,15-tetramethylhexadec-2-en-1-yl acetate (8.13%), ?-sitosterol (7.97%). In addition, results from disc diffusion assay have shown that C. thorelii acetone extract had inhibitory effects on 5 out of 10 pathogenic bacterial strains such as Bacillus cereus (ATCC 11778), Listeria monocytogenes (ATCC 19111), Staphylococcus aureus (ATCC 25923), S. aureus (ATCC 29213) and S. saprophyticus (BAA750) while C. cotuana acetone extract was found to be effective only against B. cereus. The obtained results showed that the acetone extracts of C. thorelii and C. cotuana possessed several valuable bioactive compounds as well as promising antibacterial activity, which place a good foundation for future pharmaceutical product development
    • ā€¦
    corecore